Treewidth

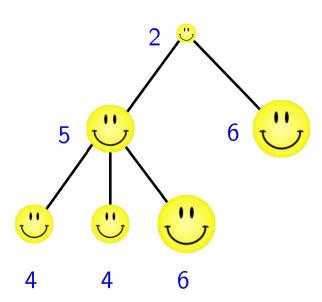
- Treewidth: a notion of "treelike" graphs.
- Some combinatorial properties.
- Algorithmic results.
 - Algorithms on graphs of bounded treewidth.
 - Applications for other problems.

PARTY PROBLEM

Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.



PARTY PROBLEM

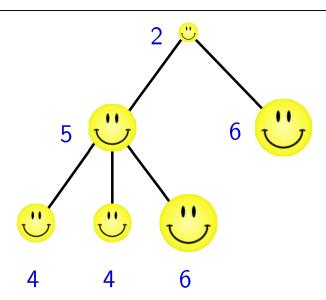
Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

Do not invite a colleague and

their direct boss at the same time!



PARTY PROBLEM

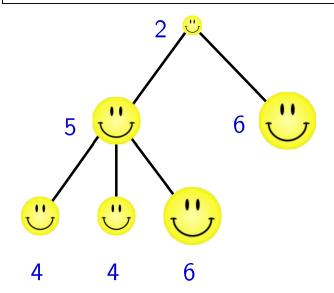
Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

Do not invite a colleague and

their direct boss at the same time!



- **Input**: A tree with weights on the vertices.
- Task: Find an independent set of maximum weight.

PARTY PROBLEM

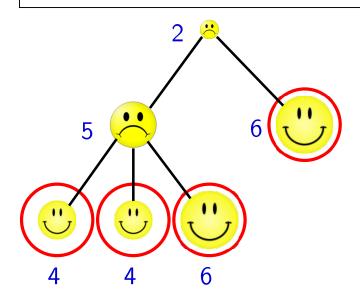
Problem: Invite some colleagues for a party.

Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.

Do not invite a colleague and

their direct boss at the same time!



- **Input**: A tree with weights on the vertices.
- Task: Find an independent set of maximum weight.

Solving the Party Problem

Dynamic programming paradigm:

We solve a large number of subproblems that depend on each other. The answer is a single subproblem.

Subproblems:

 T_{ν} : the subtree rooted at ν .

A[v]: max. weight of an independent set in T_v

B[v]: max. weight of an independent set in T_v

that does not contain v

Goal: determine A[r] for the root r.

Solving the Party Problem

Subproblems:

 T_{ν} : the subtree rooted at ν .

A[v]: max. weight of an independent set in T_v

B[v]: max. weight of an independent set in T_v

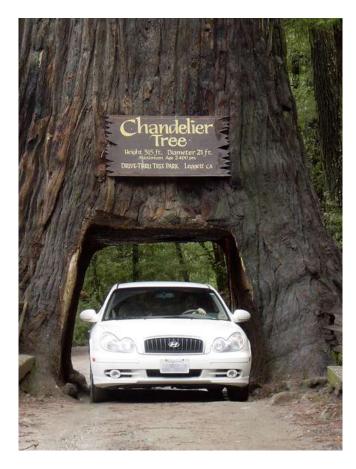
that does not contain v

Recurrence:

Assume v_1, \ldots, v_k are the children of v. Use the recurrence relations

```
B[v] = \sum_{i=1}^{k} A[v_i]
A[v] = \max\{B[v], w(v) + \sum_{i=1}^{k} B[v_i]\}
```

The values A[v] and B[v] can be calculated in a bottom-up order (the leaves are trivial).

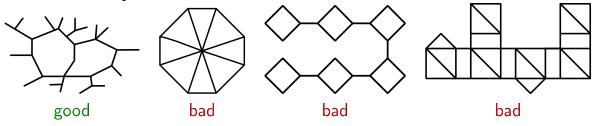


Treewidth

How could we define that a graph is "treelike"?

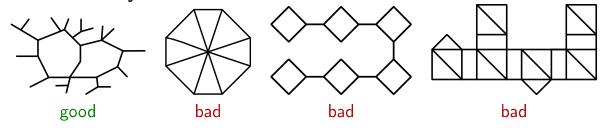
How could we define that a graph is "treelike"?

• Number of cycles is bounded.

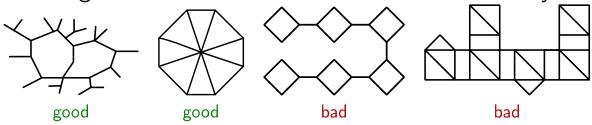


How could we define that a graph is "treelike"?

• Number of cycles is bounded.

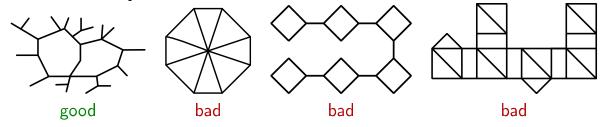


2 Removing a bounded number of vertices makes it acyclic.



How could we define that a graph is "treelike"?

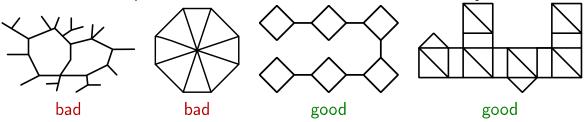
• Number of cycles is bounded.



Removing a bounded number of vertices makes it acyclic.

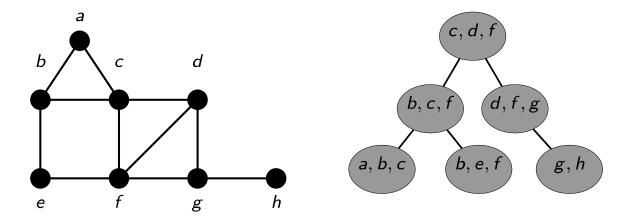


Bounded-size parts connected in a tree-like way.



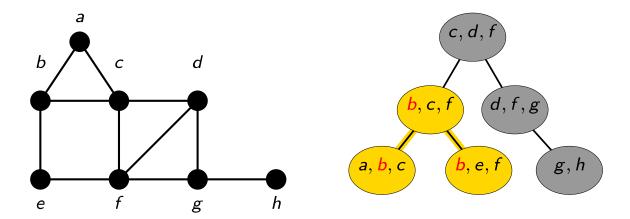
Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- ① If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.



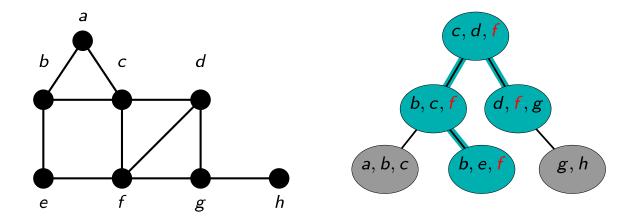
Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.



Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- ① If u and v are neighbors, then there is a bag containing both of them.
- 2 For every v, the bags containing v form a connected subtree.

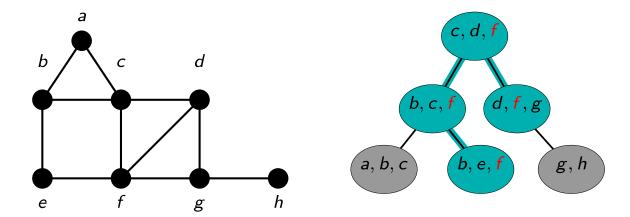


Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- If u and v are neighbors, then there is a bag containing both of them.
- \bigcirc For every \lor , the bags containing \lor form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.

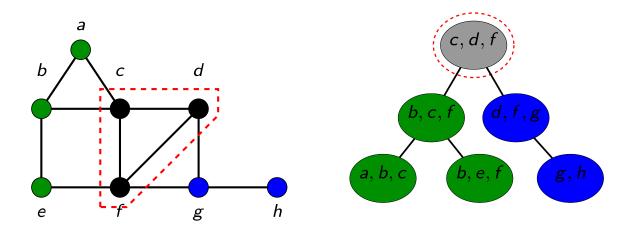


Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- ① If u and v are neighbors, then there is a bag containing both of them.
- \bigcirc For every \lor , the bags containing \lor form a connected subtree.

Width of the decomposition: largest bag size -1.

treewidth: width of the best decomposition.



Each bag is a separator.

Tree decomposition: Vertices are arranged in a tree structure satisfying the following properties:

- ① If u and v are neighbors, then there is a bag containing both of them.
- ② For every v, the bags containing v form a connected subtree.

Width of the decomposition: largest bag size -1.

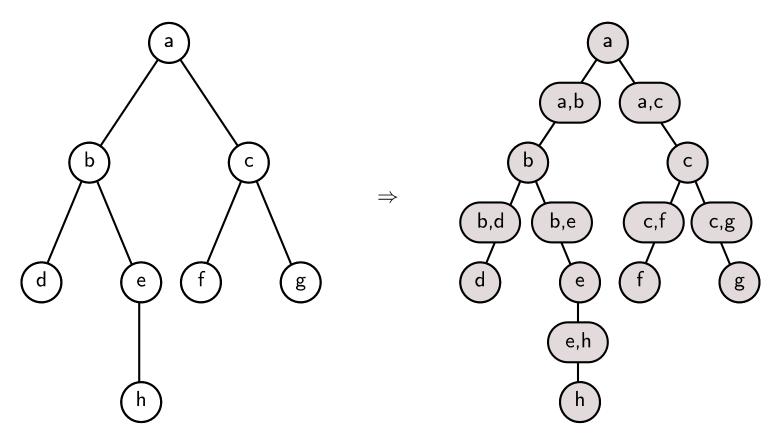
treewidth: width of the best decomposition.



A subtree communicates with the outside world only via the root of the subtree.

Treewidth

Fact: treewidth = $1 \iff$ graph is a forest



Exercise: A cycle cannot have a tree decomposition of width 1.

Treewidth — outline

- Basic algorithms
- 2 Combinatorial properties
- Applications

Finding tree decompositions

Hardness:

Theorem [Arnborg, Corneil, Proskurowski 1987]

It is NP-hard to determine the treewidth of a graph (given a graph G and an integer W, decide if the treewidth of G is at most W).

Fixed-parameter tractability:

Theorem [Bodlaender 1996]

There is a $2^{O(w^3)} \cdot n$ time algorithm that finds a tree decomposition of width w (if exists).

Consequence:

If we want an FPT algorithm parameterized by treewidth w of the input graph, then we can assume that a tree decomposition of width w is available.

Finding tree decompositions — approximately

Sometimes we can get better dependence on treewidth using approximation.

FPT approximation:

Theorem [Robertson and Seymour]

There is a $O(3^{3w} \cdot w \cdot n^2)$ time algorithm that finds a tree decomposition of width 4w + 1, if the treewidth of the graph is at most w.

Polynomial-time approximation:

Theorem [Feige, Hajiaghayi, Lee 2008]

There is a polynomial-time algorithm that finds a tree decomposition of width $O(w\sqrt{\log w})$, if the treewidth of the graph is at most w.

WEIGHTED MAX INDEPENDENT SET and treewidth

Theorem

Given a tree decomposition of width w, WEIGHTED MAX INDEPENDENT SET can be solved in time $O(2^w \cdot w^{O(1)} \cdot n)$.

 B_{x} : vertices appearing in node x.

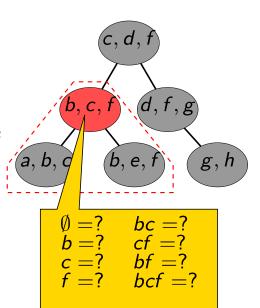
 V_{\times} : vertices appearing in the subtree rooted at \times .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for each vertex of the graph, we compute $2^{|B_X|} \le 2^{w+1}$ values for each bag B_X .

M[x, S]:

the max. weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.



WEIGHTED MAX INDEPENDENT SET and treewidth

Theorem

Given a tree decomposition of width w, WEIGHTED MAX INDEPENDENT SET can be solved in time $O(2^w \cdot w^{O(1)} \cdot n)$.

 B_{x} : vertices appearing in node x.

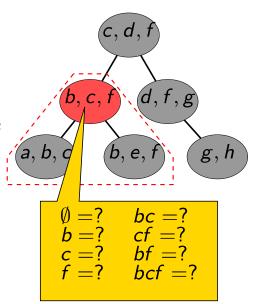
 V_{\times} : vertices appearing in the subtree rooted at \times .

Generalizing our solution for trees:

Instead of computing 2 values A[v], B[v] for each vertex of the graph, we compute $2^{|B_x|} \le 2^{w+1}$ values for each bag B_x .

M[x, S]:

the max. weight of an independent set $I \subseteq V_x$ with $I \cap B_x = S$.



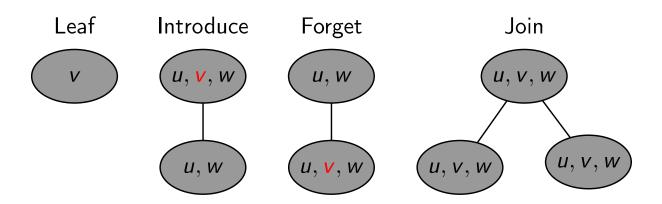
How to determine M[x, S] if all the values are known for the children of x?

Nice tree decompositions

Definition

A rooted tree decomposition is **nice** if every node x is one of the following 4 types:

- Leaf: no children, $|B_x| = 1$
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v
- Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v
- Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$



Nice tree decompositions

Definition

A rooted tree decomposition is **nice** if every node x is one of the following 4 types:

- Leaf: no children, $|B_x| = 1$
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v
- Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v
- Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

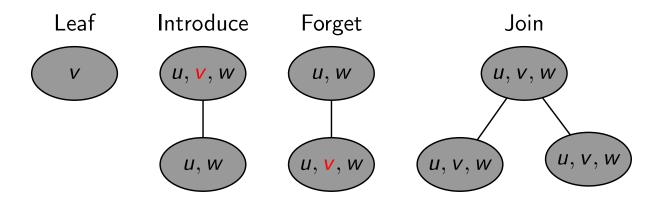
Theorem

A tree decomposition of width w and n nodes can be turned into a nice tree decomposition of width w and O(wn) nodes in time $O(w^2n)$.

WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

- Leaf: no children, $|B_x| = 1$ Trivial!
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v

$$m[x,S] = \begin{cases} M[y,S] & \text{if } v \notin S, \\ M[y,S \setminus \{v\}] + w(v) & \text{if } v \in S \text{ but } v \text{ has no neighbor in } S, \\ -\infty & \text{if } S \text{ contains } v \text{ and its neighbor.} \end{cases}$$



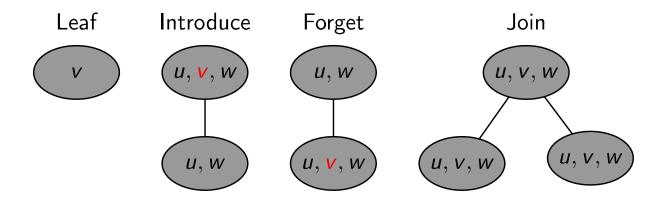
WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

• Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v

$$m[x,S] = \max\{M[y,S], M[y,S \cup \{v\}]\}$$

• Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

$$m[x, S] = M[y_1, S] + M[y_2, S] - w(S)$$



WEIGHTED MAX INDEPENDENT SET and nice tree decompositions

• Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v

$$m[x,S] = \max\{M[y,S], M[y,S \cup \{v\}]\}$$

• Join: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$

$$m[x, S] = M[y_1, S] + M[y_2, S] - w(S)$$

There are at most $2^{w+1} \cdot n$ subproblems m[x, S] and each subproblem can be solved in $w^{O(1)}$ time

(assuming the children are already solved).

Running time is
$$O(2^w \cdot w^{O(1)} \cdot n)$$
.

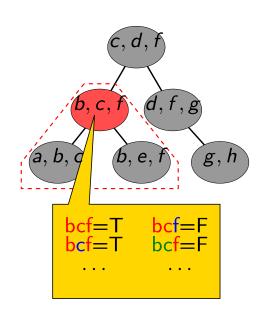
Theorem

Given a tree decomposition of width w, 3-Coloring can be solved in $O(3^w \cdot w^{O(1)} \cdot n)$.

 B_{x} : vertices appearing in node x.

 V_{x} : vertices appearing in the subtree rooted at x.

For every node x and coloring $c: B_x \to \{1,2,3\}$, we compute the Boolean value E[x,c], which is true if and only if c can be extended to a proper 3-coloring of V_x .



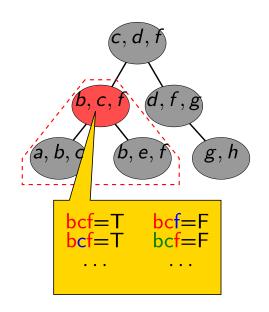
Theorem

Given a tree decomposition of width w, 3-Coloring can be solved in $O(3^w \cdot w^{O(1)} \cdot n)$.

 B_{x} : vertices appearing in node x.

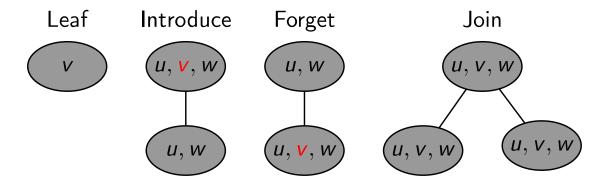
 V_{x} : vertices appearing in the subtree rooted at x.

For every node x and coloring $c: B_x \to \{1,2,3\}$, we compute the Boolean value E[x,c], which is true if and only if c can be extended to a proper 3-coloring of V_x .

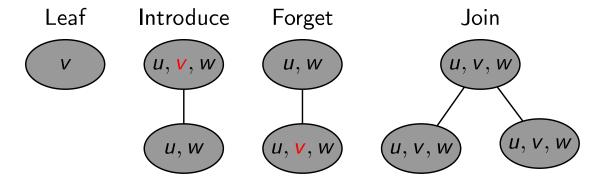


How to determine E[x, c] if all the values are known for the children of x?

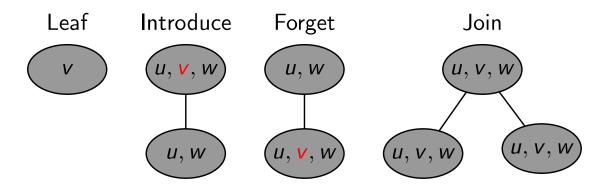
• Leaf: no children, $|B_x| = 1$ Trivial!



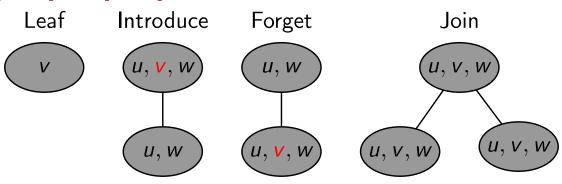
- Leaf: no children, $|B_x| = 1$ Trivial!
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then E[x, c] = E[y, c'], where c' is c restricted to B_y .



- Leaf: no children, $|B_x| = 1$ Trivial!
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then E[x, c] = E[y, c'], where c' is c restricted to B_y .
- Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v E[x, c] is true if E[y, c'] is true for one of the 3 extensions of c to B_v .



- Leaf: no children, $|B_x| = 1$ Trivial!
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then E[x, c] = E[y, c'], where c' is c restricted to B_y .
- Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v E[x,c] is true if E[y,c'] is true for one of the 3 extensions of c to B_y .
- **Join**: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$ $E[x, c] = E[y_1, c] \land E[y_2, c]$



- Leaf: no children, $|B_x| = 1$ Trivial!
- Introduce: 1 child y with $B_x = B_y \cup \{v\}$ for some vertex v If $c(v) \neq c(u)$ for every neighbor u of v, then E[x, c] = E[y, c'], where c' is c restricted to B_y .
- Forget: 1 child y with $B_x = B_y \setminus \{v\}$ for some vertex v E[x,c] is true if E[y,c'] is true for one of the 3 extensions of c to B_y .
- **Join**: 2 children y_1 , y_2 with $B_x = B_{y_1} = B_{y_2}$ $E[x, c] = E[y_1, c] \land E[y_2, c]$

There are at most $3^{w+1} \cdot n$ subproblems E[x, c] and each subproblem can be solved in $w^{O(1)}$ time (assuming the children are already solved).

- \Rightarrow Running time is $O(3^w \cdot w^{O(1)} \cdot n)$.
- \Rightarrow 3-Coloring is FPT parameterized by treewidth.

Vertex coloring

More generally:

Theorem

Given a tree decomposition of width w, c-Coloring can be solved in time $c^w \cdot n^{O(1)}$.

Exercise: Every graph of treewidth at most w can be colored with w+1 colors.

Theorem

Given a tree decomposition of width w, VERTEX COLORING can be solved in time $O^*(w^w)$.

⇒ VERTEX COLORING is FPT parameterized by treewidth.

DOMINATING SET: Given G and k, find a set S of k vertices such that every vertex of G is in S or has a neighbor in S.

 B_x : vertices appearing in node x.

 V_{x} : vertices appearing in the subtree rooted at x.

What would be the subproblems for DOMINATING SET at node \times ?

DOMINATING SET: Given G and k, find a set S of k vertices such that every vertex of G is in S or has a neighbor in S.

 B_{x} : vertices appearing in node x.

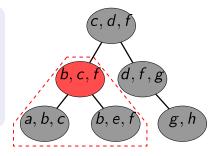
 V_{x} : vertices appearing in the subtree rooted at x.

What would be the subproblems for DOMINATING SET at node \times ?

First try:

M[x, S]: size of the smallest set $D \subseteq V_x$ such that

- Every vertex in V_{\times} is dominated by D.
- $D \cap B_x = S$.



DOMINATING SET: Given G and k, find a set S of k vertices such that every vertex of G is in S or has a neighbor in S.

 B_{x} : vertices appearing in node x.

 V_{x} : vertices appearing in the subtree rooted at x.

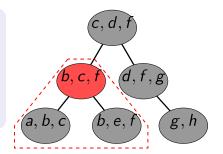
What would be the subproblems for DOMINATING SET at node \times ?

First try:

M[x, S]: size of the smallest set $D \subseteq V_x$ such that

- Every vertex in V_{\times} is dominated by D.
- $D \cap B_x = S$.

Problem: vertices in B_x can be dominated by vertices outside V_x .



DOMINATING SET: Given G and k, find a set S of k vertices such that every vertex of G is in S or has a neighbor in S.

 B_{x} : vertices appearing in node x.

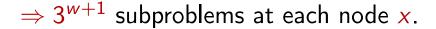
 V_{x} : vertices appearing in the subtree rooted at x.

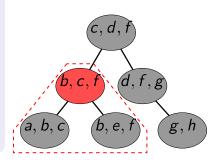
What would be the subproblems for DOMINATING SET at node \times ?

Second try:

 $M[x, S_1, S_2]$: size of the smallest set $D \subseteq V_x$ such that

- Every vertex in $V_{\times} \setminus B_{\times}$ is dominated by D.
- $D \cap B_x = S_1$.
- D dominates every vertex of S_2 .





 $M[x, S_1, S_2]$: size of the smallest set $D \subseteq V_x$ such that

- Every vertex in $V_{\times} \setminus B_{\times}$ is dominated by D.
- $S \cap B_x = S_1$.
- D dominates every vertex of S_2 .

 $M[x, S_1, S_2]$: size of the smallest set $D \subseteq V_x$ such that

- Every vertex in $V_{\times} \setminus B_{\times}$ is dominated by D.
- $S \cap B_{x} = S_{1}$
- D dominates every vertex of S_2 .

How can we solve subproblem $M[x, S_1, S_2]$ when x is a join node?

• Consider $3^{|S_2|}$ cases: each vertex of S_2 is dominated from the left child, right child, or both $\Rightarrow O(9^w \cdot n)$ time.

 $M[x, S_1, S_2]$: size of the smallest set $D \subseteq V_x$ such that

- Every vertex in $V_{\times} \setminus B_{\times}$ is dominated by D.
- $S \cap B_{x} = S_{1}$.
- D dominates every vertex of S_2 .

- Consider $3^{|S_2|}$ cases: each vertex of S_2 is dominated from the left child, right child, or both $\Rightarrow O(9^w \cdot n)$ time.
- Consider $5^{|B_x|}$ subproblems: in the solution/not dominated/dominated from left/dominated from right/dominated from both $\Rightarrow O(5^w \cdot n)$ time.

 $M[x, S_1, S_2]$: size of the smallest set $D \subseteq V_x$ such that

- Every vertex in $V_{\times} \setminus B_{\times}$ is dominated by D.
- $S \cap B_x = S_1$.
- D dominates every vertex of S_2 .

- Consider $3^{|S_2|}$ cases: each vertex of S_2 is dominated from the left child, right child, or both $\Rightarrow O(9^w \cdot n)$ time.
- Consider $5^{|B_x|}$ subproblems: in the solution/not dominated/dominated from left/dominated from right/dominated from both $\Rightarrow O(5^w \cdot n)$ time.
- Renaming "not dominated" to "don't care" can improve to $O(4^w \cdot n)$ time.

 $M[x, S_1, S_2]$: size of the smallest set $D \subseteq V_x$ such that

- Every vertex in $V_{\times} \setminus B_{\times}$ is dominated by D.
- $S \cap B_x = S_1$.
- D dominates every vertex of S_2 .

- Consider $3^{|S_2|}$ cases: each vertex of S_2 is dominated from the left child, right child, or both $\Rightarrow O(9^w \cdot n)$ time.
- Consider $5^{|B_x|}$ subproblems: in the solution/not dominated/dominated from left/dominated from right/dominated from both $\Rightarrow O(5^w \cdot n)$ time.
- Renaming "not dominated" to "don't care" can improve to $O(4^w \cdot n)$ time.
- Fast subset convolution: $O(3^w \cdot n)$ time.

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

- Logical connectives \land , \lor , \rightarrow , \neg , =, \neq
- quantifiers ∀, ∃ over vertex/edge variables
- predicate adj(u, v): vertices u and v are adjacent
- predicate inc(e, v): edge e is incident to vertex v
- quantifiers ∀, ∃ over vertex/edge set variables
- €, ⊆ for vertex/edge sets

Example:

The formula

```
\exists C \subseteq V \forall v \in C \ \exists u_1, u_2 \in C(u_1 \neq u_2 \land \mathsf{adj}(u_1, v) \land \mathsf{adj}(u_2, v))
```

is true on graph G if and only if . . .

Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:

- Logical connectives \land , \lor , \rightarrow , \neg , =, \neq
- quantifiers ∀, ∃ over vertex/edge variables
- predicate adj(u, v): vertices u and v are adjacent
- predicate inc(e, v): edge e is incident to vertex v
- quantifiers ∀, ∃ over vertex/edge set variables
- €, ⊆ for vertex/edge sets

Example:

The formula

```
\exists C \subseteq V \forall v \in C \ \exists u_1, u_2 \in C(u_1 \neq u_2 \land \mathsf{adj}(u_1, v) \land \mathsf{adj}(u_2, v))
```

is true on graph G if and only if G has a cycle.

Courcelle's Theorem

Courcelle's Theorem

If a graph property can be expressed in EMSO, then for every fixed $w \ge 1$, there is a linear-time algorithm for testing this property on graphs having treewidth at most w.

Courcelle's Theorem

Courcelle's Theorem

There exists an algorithm that, given a width-w tree decomposition of an n-vertex graph G and an EMSO formula ϕ , decides whether G satisfies ϕ in time $f(w, |\phi|) \cdot n$.

Courcelle's Theorem

Courcelle's Theorem

There exists an algorithm that, given a width-w tree decomposition of an n-vertex graph G and an EMSO formula ϕ , decides whether G satisfies ϕ in time $f(w, |\phi|) \cdot n$.

If we can express a property in EMSO, then we immediately get that testing this property is FPT parameterized by the treewidth w of the input graph.

Note: The constant depending on w can be very large (double, triple exponential etc.), therefore a direct dynamic programming algorithm can be more efficient.

Using Courcelle's Theorem

Can we express 3-Coloring and Hamiltonian Cycle in EMSO?

Using Courcelle's Theorem

Can we express 3-Coloring and Hamiltonian Cycle in EMSO?

3-Coloring

$$\exists C_1, C_2, C_3 \subseteq V \ (\forall v \in V \ (v \in C_1 \lor v \in C_2 \lor v \in C_3)) \land (\forall u, v \in V \ \mathsf{adj}(u, v) \to (\neg (u \in C_1 \land v \in C_1) \land \neg (u \in C_2 \land v \in C_2) \land \neg (u \in C_3 \land v \in C_3)))$$

Using Courcelle's Theorem

Can we express 3-Coloring and Hamiltonian Cycle in EMSO?

3-Coloring

$$\exists C_1, C_2, C_3 \subseteq V \ (\forall v \in V \ (v \in C_1 \lor v \in C_2 \lor v \in C_3)) \land (\forall u, v \in V \ \mathsf{adj}(u, v) \to (\neg (u \in C_1 \land v \in C_1) \land \neg (u \in C_2 \land v \in C_2) \land \neg (u \in C_3 \land v \in C_3)))$$

HAMILTONIAN CYCLE

```
\exists H \subseteq E \big( \mathsf{spanning}(H) \land (\forall v \in V \, \mathsf{degree2}(H, v)) \big)
\mathsf{degree2}(H, v) := \exists e_1, e_2 \in H \big( (e_1 \neq e_2) \land \mathsf{inc}(e_1, v) \land \mathsf{inc}(e_2, v) \land (\forall e_3 \in H \mathsf{inc}(e_3, v) \rightarrow (e_1 = e_3 \lor e_2 = e_3)) \big)
\mathsf{spanning}(H) := \forall Z \subseteq V \big( ((\exists v \in V : v \in Z) \land (\exists v \in V : v \not\in Z)) \rightarrow (\exists e \in H \exists x \in V \exists y \in V : (x \in Z) \land (y \not\in Z) \land \mathsf{inc}(e, x) \land \mathsf{inc}(e, y)) \big)
```

SUBGRAPH ISOMORPHISM

SUBGRAPH ISOMORPHISM

Input: graphs H and G

Find: a subgraph of G isomorphic to H.

SUBGRAPH ISOMORPHISM

Subgraph Isomorphism

Input: graphs H and G

Find: a subgraph of G isomorphic to H.

For each H, we can construct a formula ϕ_H that expresses "G has a subgraph isomorphic to H" (similarly to the k-cycle on the previous slide).

 \Rightarrow By Courcelle's Theorem, Subgraph Isomorphism can be solved in time $f(H, w) \cdot n$ if G has treewidth at most w.

SUBGRAPH ISOMORPHISM

Subgraph Isomorphism

Input: graphs H and G

Find: a subgraph of G isomorphic to H.

Since there is only a finite number of simple graphs on k vertices, Subgraph Isomorphism can be solved in time $f(k, w) \cdot n$ if H has k vertices and G has treewidth at most W.

Theorem

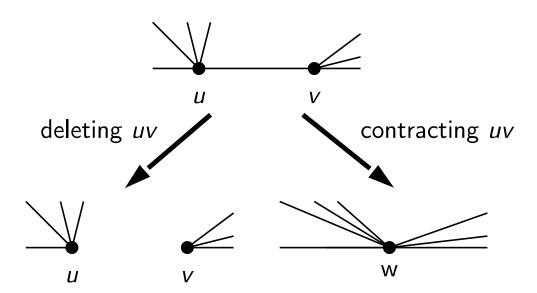
SUBGRAPH ISOMORPHISM is FPT parameterized by combined parameter k := |V(H)| and the treewidth w of G.

Minor

An operation similar to taking subgraphs:

Definition

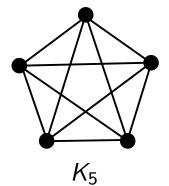
Graph H is a minor of G ($H \leq G$) if H can be obtained from G by deleting edges, deleting vertices, and contracting edges.

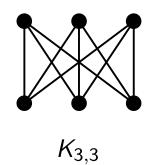


A classical result

Theorem [Kuratowski 1930]

A graph G is planar if and only if G does not contain a subdivision of K_5 or $K_{3,3}$.





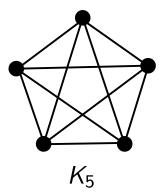
A classical result

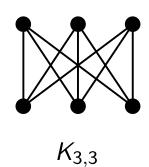
Theorem [Kuratowski 1930]

A graph G is planar if and only if G does not contain a subdivision of K_5 or $K_{3,3}$.

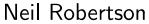
Theorem [Wagner 1937]

A graph G is planar if and only if G does not contain K_5 or $K_{3,3}$ as minor.





Graph Minors Theory



Paul Seymour

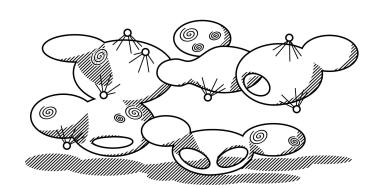
Theory of graph minors developed in the monumental series

Graph Minors I–XXIII.

J. Combin. Theory, Ser. B

1983–2012

- Structure theory of graphs excluding minors (and much more).
- Galactic combinatorial bounds and running times.
- Important early influence for parameterized algorithms.



Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

 \Rightarrow If F is a minor of G, then the treewidth of F is at most the treewidth of G.

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

 \Rightarrow If F is a minor of G, then the treewidth of F is at most the treewidth of G.

Fact: For every clique K, there is a bag B with $K \subseteq B$.

Fact: The treewidth of the k-clique is k-1.

Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete vertices, or contract edges.

 \Rightarrow If F is a minor of G, then the treewidth of F is at most the treewidth of G.

Fact: For every clique K, there is a bag B with $K \subseteq B$.

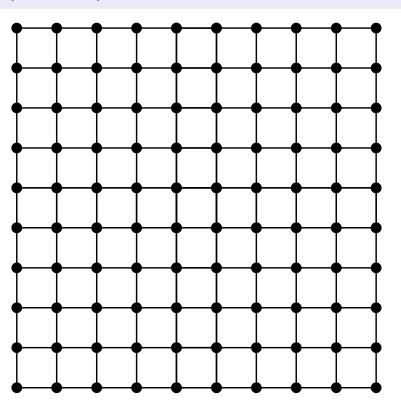
Fact: The treewidth of the k-clique is k-1.

Fact: For every $k \geq 2$, the treewidth of the $k \times k$ grid is exactly k.

Excluded Grid Theorem

Excluded Grid Theorem

If the treewidth of G is $\Omega(k^9 \log k)$, then G has a $k \times k$ grid minor.

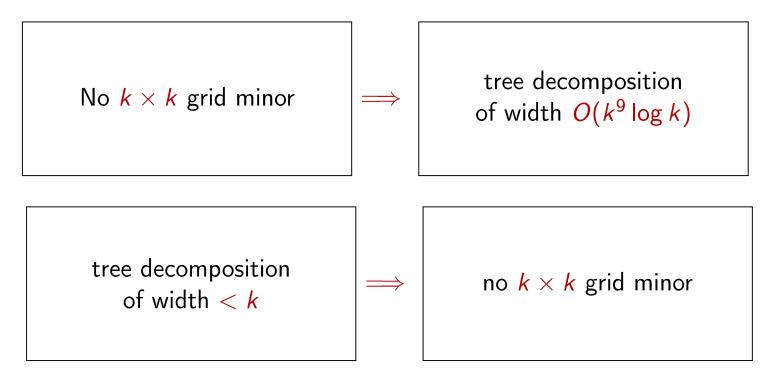


Excluded Grid Theorem

Excluded Grid Theorem

If the treewidth of G is $\Omega(k^9 \log k)$, then G has a $k \times k$ grid minor.

A large grid minor is a "witness" that treewidth is large, but the relation is approximate:



Excluded Grid Theorem

Excluded Grid Theorem

If the treewidth of G is $\Omega(k^9 \log k)$, then G has a $k \times k$ grid minor.

Observation: Every planar graph is the minor of a sufficiently large grid.

Consequence

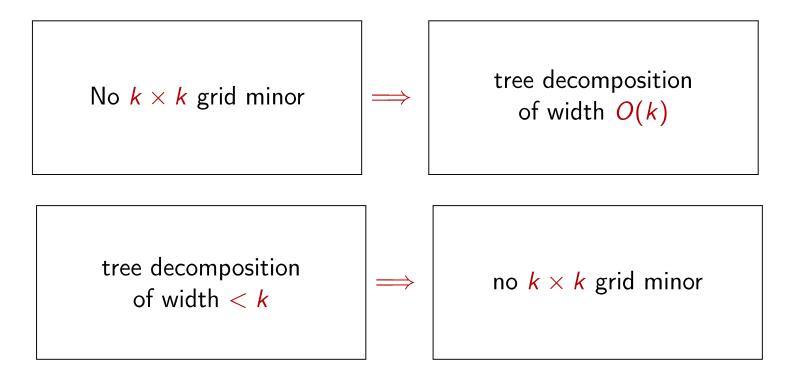
If H is planar, then every H-minor free graph has treewidth at most f(H).

Planar Excluded Grid Theorem

For planar graphs, we get linear instead of exponential dependence:

Theorem

Every planar graph with treewidth at least 5k has a $k \times k$ grid minor.



Planar Excluded Grid Theorem

For planar graphs, we get linear instead of exponential dependence:

Theorem

Every planar graph with treewidth at least 5k has a $k \times k$ grid minor.

Theorem

An *n*-vertex planar graph has treewidth $O(\sqrt{n})$.

VERTEX COVER

Theorem

VERTEX COVER can be solved in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$ in planar graphs.

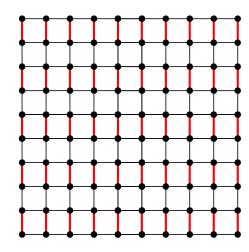
We need two facts:

- Removing an edge, removing a vertex, contracting an edge cannot increase the vertex cover number.
- VERTEX COVER can be solved in time $2^w \cdot n^{O(1)}$ if a tree decomposition of width w is given.

VERTEX COVER

Observation: If the treewidth of a planar graph G is at least $5\sqrt{2k}$

- \Rightarrow It has a $\sqrt{2k} \times \sqrt{2k}$ grid minor (Planar Excluded Grid Theorem)
- \Rightarrow The grid has a matching of size k
- \Rightarrow Vertex cover size is at least k in the grid.
- \Rightarrow Vertex cover size is at least k in G.



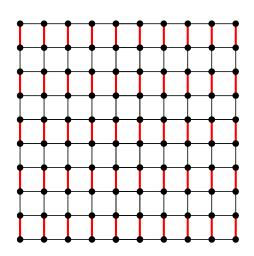
VERTEX COVER

Observation: If the treewidth of a planar graph G is at least $5\sqrt{2k}$

- \Rightarrow It has a $\sqrt{2k} \times \sqrt{2k}$ grid minor (Planar Excluded Grid Theorem)
- \Rightarrow The grid has a matching of size k
- \Rightarrow Vertex cover size is at least k in the grid.
- \Rightarrow Vertex cover size is at least k in G.

We use this observation to solve VERTEX COVER on planar graphs:

- If treewidth is at least $5\sqrt{2k}$: we answer "vertex cover is $\geq k$."
- If treewidth is less than $5\sqrt{2k}$, then we can solve the problem in time $2^{O(5\sqrt{2k})} \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$.



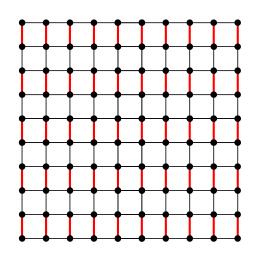
VERTEX COVER

Observation: If the treewidth of a planar graph G is at least $5\sqrt{2k}$

- \Rightarrow It has a $\sqrt{2k} \times \sqrt{2k}$ grid minor (Planar Excluded Grid Theorem)
- \Rightarrow The grid has a matching of size k
- \Rightarrow Vertex cover size is at least k in the grid.
- \Rightarrow Vertex cover size is at least k in G.

We use this observation to solve VERTEX COVER on planar graphs:

- Set $w := 5\sqrt{2k}$.
- Find a 4-approximate tree decomposition.
 - If treewidth is at least w: we answer "vertex cover is $\geq k$."
 - If we get a tree decomposition of width 4w, then we can solve the problem in time $2^{O(w)} \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$.



A powerful framework for efficient algorithms on planar graphs.

Setup:

- Let x(G) be some graph invariant (i.e., an integer associated with each graph).
- Given G and k, we want to decide if $x(G) \le k$ (or $x(G) \ge k$).
- Typical examples:
 - Maximum independent set size.
 - Minimum vertex cover size.
 - Length of the longest path.
 - Minimum dominating set size.
 - Minimum feedback vertex set size.

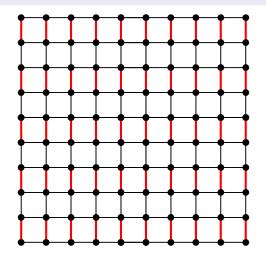
Bidimensionality

For many natural invariants, we can do this in time $2^{O(\sqrt{k})} \cdot n^{O(1)}$ on planar graphs.

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

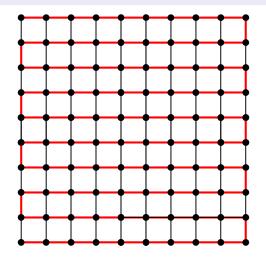


Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

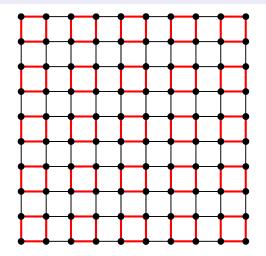


Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).



Examples: minimum vertex cover, length of the longest path, feedback vertex set are minor-bidimensional.

Bidimensionality (cont.)

We can answer " $x(G) \ge k$?" for a minor-bidimensional invariant the following way:

- Set $w := c\sqrt{k}$ for an appropriate constant c.
- Use the 4-approximation tree decomposition algorithm.
 - If treewidth is at least w: x(G) is at least k.
 - If we get a tree decomposition of width 4w, then we can solve the problem using dynamic programming on the tree decomposition.

Running time:

- If we can solve the problem on tree decomposition of width w in time $2^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k})} \cdot n^{O(1)}$.
- If we can solve the problem on tree decomposition of width w in time $w^{O(w)} \cdot n^{O(1)}$, then the running time is $2^{O(\sqrt{k} \log k)} \cdot n^{O(1)}$.

Definition

A graph invariant x(G) is minor-bidimensional if

- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Exercise: DOMINATING SET is not minor-bidimensional.

Definition

A graph invariant x(G) is minor-bidimensional if

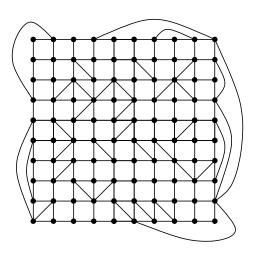
- $x(G') \le x(G)$ for every minor G' of G, and
- If G_k is the $k \times k$ grid, then $x(G_k) \ge ck^2$ (for some constant c > 0).

Exercise: DOMINATING SET is **not** minor-bidimensional.

We fix the problem by allowing only contractions but not edge/vertex deletions.

Theorem

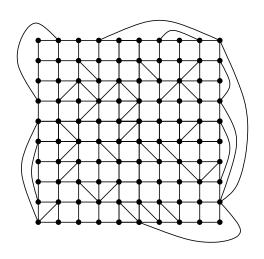
Every planar graph with treewidth at least 5k can be contracted to a partially triangulated $k \times k$ grid.



Definition

A graph invariant x(G) is contraction-bidimensional if

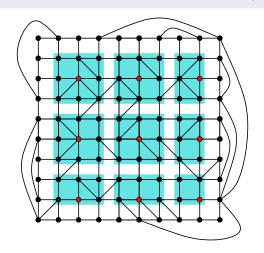
- $x(G') \le x(G)$ for every contraction G' of G, and
- If G_k is a $k \times k$ partially triangulated grid, then $x(G_k) \ge ck^2$ (for some c > 0).



Definition

A graph invariant x(G) is contraction-bidimensional if

- $x(G') \le x(G)$ for every contraction G' of G, and
- If G_k is a $k \times k$ partially triangulated grid, then $x(G_k) \ge ck^2$ (for some c > 0).

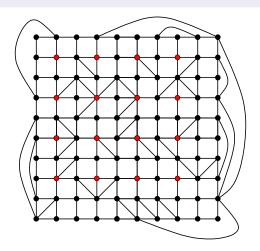


Example: minimum dominating set, maximum independent set are contraction-bidimensional.

Definition

A graph invariant x(G) is contraction-bidimensional if

- $x(G') \le x(G)$ for every contraction G' of G, and
- If G_k is a $k \times k$ partially triangulated grid, then $x(G_k) \ge ck^2$ (for some c > 0).



Example: minimum dominating set, maximum independent set are contraction-bidimensional.

Bidimensionality for DOMINATING SET

The size of a minimum dominating set is a **contraction bidimensional** invariant: we need at least $(k-2)^2/9$ vertices to dominate all the internal vertices of a partially triangulated $k \times k$ grid (since a vertex can dominate at most 9 internal vertices).

Theorem

Given a tree decomposition of width w, DOMINATING SET can be solved in time $3^w \cdot w^{O(1)} \cdot n^{O(1)}$.

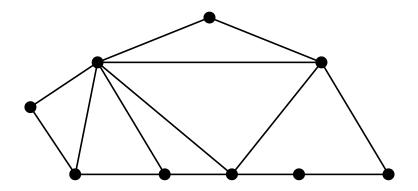
Solving DOMINATING SET on planar graphs:

- Set $w := 5(3\sqrt{k} + 2)$.
- Use the 4-approximation tree decomposition algorithm.
 - If treewidth is at least w: we answer 'dominating set is $\geq k$ '.
 - If we get a tree decomposition of width 4w, then we can solve the problem in time $3^w \cdot n^{O(1)} = 2^{O(\sqrt{k})} \cdot n^{O(1)}$.

Outerplanar graphs

Definition

A planar graph is **outerplanar** if it has a planar embedding where every vertex is on the infinite face.

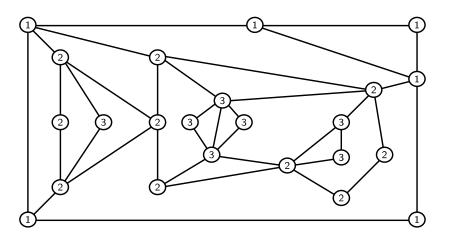


Fact

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition

A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

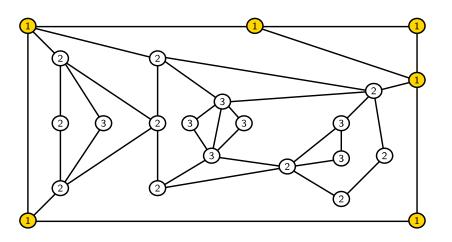


Fact

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition

A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

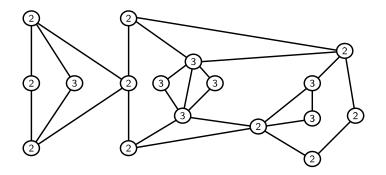


Fact

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition

A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

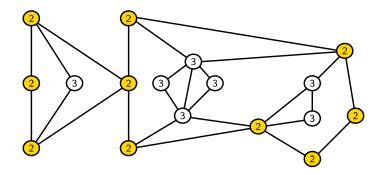


Fact

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition

A planar graph is k-outerplanar if it has a planar embedding having at most k layers.



Fact

Given a planar embedding, we can define **layers** by iteratively removing the vertices on the infinite face.

Definition

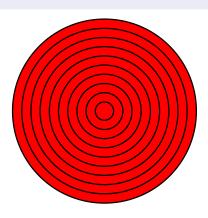
A planar graph is k-outerplanar if it has a planar embedding having at most k layers.

Fact

SUBGRAPH ISOMORPHISM

Input: graphs H and G

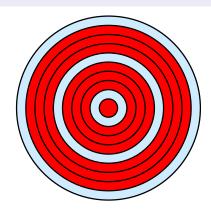
Find: a subgraph G isomorphic to H.



SUBGRAPH ISOMORPHISM

Input: graphs *H* and *G*

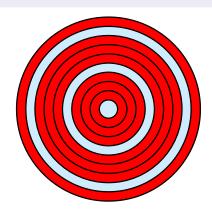
Find: a subgraph G isomorphic to H.



SUBGRAPH ISOMORPHISM

Input: graphs H and G

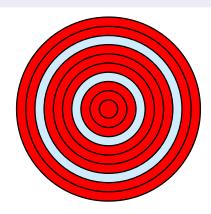
Find: a subgraph G isomorphic to H.



SUBGRAPH ISOMORPHISM

Input: graphs H and G

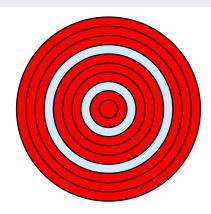
Find: a subgraph G isomorphic to H.



SUBGRAPH ISOMORPHISM

Input: graphs H and G

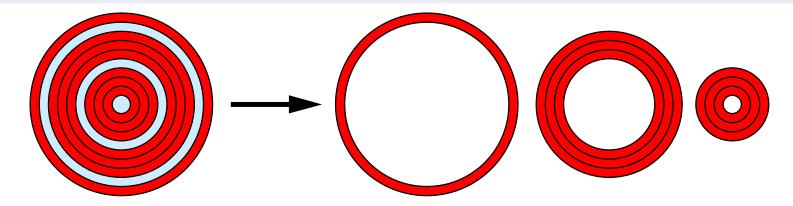
Find: a subgraph G isomorphic to H.



SUBGRAPH ISOMORPHISM

Input: graphs H and G

Find: a subgraph G isomorphic to H.

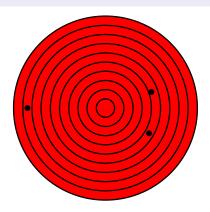


- For a fixed $0 \le s < k+1$, delete every layer L_i with $i = s \pmod{k+1}$
- The resulting graph is k-outerplanar, hence it has treewidth at most 3k + 1.
- Using the $f(k, tw) \cdot n$ time algorithm for Subgraph Isomorphism, the problem can be solved in time $f(k, 3k + 1) \cdot n$.

SUBGRAPH ISOMORPHISM

Input: graphs H and G

Find: a subgraph G isomorphic to H.

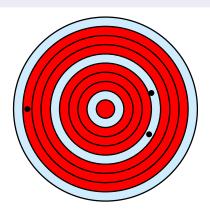


We do this for every $0 \le s < k + 1$: for at least one value of s, we do not delete any of the k vertices of the solution

SUBGRAPH ISOMORPHISM

Input: graphs H and G

Find: a subgraph G isomorphic to H.

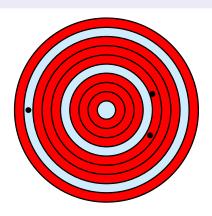


We do this for every $0 \le s < k + 1$: for at least one value of s, we do not delete any of the k vertices of the solution

SUBGRAPH ISOMORPHISM

Input: graphs H and G

Find: a subgraph G isomorphic to H.

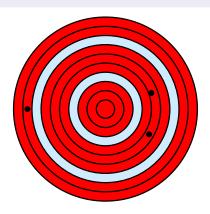


We do this for every $0 \le s < k + 1$: for at least one value of s, we do not delete any of the k vertices of the solution

SUBGRAPH ISOMORPHISM

Input: graphs H and G

Find: a subgraph G isomorphic to H.

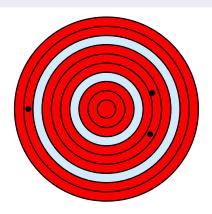


We do this for every $0 \le s < k + 1$: for at least one value of s, we do not delete any of the k vertices of the solution

SUBGRAPH ISOMORPHISM

Input: graphs H and G

Find: a subgraph G isomorphic to H.



Theorem

Subgraph Isomorphism for planar graphs is FPT parameterized by k := |V(H)|.